Abstract
Current and future multicore architectures can significantly accelerate the performance of test automation procedures depending on the underlying architecture and the scalability of their algorithms. This paper proposes a new parallel methodology targeting the fault simulation problem, for shared memory multicore systems, that maintains scalability with the increase of the number of cores. The method is based on a simple single thread process that allows focusing on the optimization of the parallelization process in different dimensions. Additionally, a number of optimizations are incorporated in the approach to control fault dropping and to avoid unnecessary work. The reported experimental results, for both random and deterministic test sets, demonstrate the scalability of the method. As the number of cores increases, the reported speed-up increases proportionally, where comparable recent methods report saturation or even reduction of the obtained speed-up.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.