Abstract

Scattering media, such as diffused glass and biological tissue, are usually treated as obstacles in imaging. To cope with the random phase introduced by a turbid medium, most existing imaging techniques recourse to either phase compensation by optical means or phase recovery using iterative algorithms, and their applications are often limited to two-dimensional imaging. In contrast, we utilize the scattering medium as an unconventional imaging lens and exploit its lens-like properties for lensless three-dimensional (3D) imaging with diffraction-limited resolution. Our spatially incoherent lensless imaging technique is simple and capable of variable focusing with adjustable depths of focus that enables depth sensing of 3D objects that are concealed by the diffusing medium. Wide-field imaging with diffraction-limited resolution is verified experimentally by a single-shot recording of the 1951 USAF resolution test chart, and 3D imaging and depth sensing are demonstrated by shifting focus over axially separated objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.