Abstract

For successful deployment of deep neural networks (DNNs) on resource-constrained devices, retraining-based quantization has been widely adopted to reduce the number of DRAM accesses. By properly setting training parameters, such as batch size and learning rate, bit widths of both weights and activations can be uniformly quantized down to 4 bit while maintaining full precision accuracy. In this article, we present a retraining-based mixed-precision quantization approach and its customized DNN accelerator to achieve high energy efficiency. In the proposed quantization, in the middle of retraining, an additional bit (extra quantization level) is assigned to the weights that have shown frequent switching between two contiguous quantization levels since it means that both quantization levels cannot help to reduce quantization loss. We also mitigate the gradient noise that occurs in the retraining process by taking a lower learning rate near the quantization threshold. For the proposed novel mixed-precision quantized network (MPQ-network), we have implemented a customized accelerator using a 65-nm CMOS process. In the accelerator, the proposed processing elements (PEs) can be dynamically reconfigured to process variable bit widths from 2 to 4 bit for both weights and activations. The numerical results show that the proposed quantization can achieve 1.37 × better compression ratio for VGG-9 using CIFAR-10 data set compared with a uniform 4-bit (both weights and activations) model without loss of classification accuracy. The proposed accelerator also shows 1.29× of energy savings for VGG-9 using the CIFAR-10 data set over the state-of-the-art accelerator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.