Abstract

When model-checking reports that a property holds on a model, vacuity detection increases user confidence in this result by checking that the property is satisfied in the intended way. While vacuity detection is effective, it is a relatively expensive technique requiring many additional model-checking runs. We address the problem of efficient vacuity detection for Bounded Model Checking (BMC) of linear temporal logic properties, presenting three partial vacuity detection methods based on the efficient analysis of the resolution proof produced by a successful BMC run. In particular, we define a characteristic of resolution proofs— peripherality—and prove that if a variable is a source of vacuity, then there exists a resolution proof in which this variable is peripheral. Our vacuity detection tool, VaqTree, uses these methods to detect vacuous variables, decreasing the total number of model-checking runs required to detect all sources of vacuity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.