Abstract

Risky-prescribing is the excessive or inappropriate prescription of drugs that singly or in combination pose significant risks of adverse health outcomes. In the United States, prescribing of opioids and other "risky" drugs is a national public health concern. We use a novel data framework-a directed network connecting physicians who encounter the same patients in a sequence of visits-to investigate if risky-prescribing diffuses across physicians through a process of peer-influence. Using a shared-patient network of 10661 Ohio-based physicians constructed from Medicare claims data over 2014-2015, we extract information on the order in which patients encountered physicians to derive a directed patient-sharing network. This enables the novel decomposition of peer-effects of a medical practice such as risky-prescribing into directional (outbound and inbound) and bidirectional (mutual) relationship components. Using this framework, we develop models of peer-effects for contagion in risky-prescribing behavior as well as spillover effects. The latter is measured in terms of adverse health events suspected to be related to risky-prescribing in patients of peer-physicians. Estimated peer-effects were strongest when the patient-sharing relationship was mutual as opposed to directional. Using simulations we confirmed that our modeling and estimation strategies allows simultaneous estimation of each type of peer-effect (mutual and directional) with accuracy and precision. We also show that failing to account for these distinct mechanisms (a form of model mis-specification) produces misleading results, demonstrating the importance of retaining directional information in the construction of physician shared-patient networks. These findings suggest network-based interventions for reducing risky-prescribing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.