Abstract

Real-time performance awareness is one among the many when it comes to recent trends in optical transport networks. Driving the network towards an optimum operating point compared to end of life (EoL) margin stacked over dimensioned networks are some of the key benefits of such real time performance data. The authors exploit the availability of such real time data, which is fairly static over a shorter time window, to be used for network restoration. This paper does a comparison between two network modes where in (i) restoration path and resources are calculated with offline planned EoL performance data and (ii) restoration path and resources are calculated with real time performance data. As the later one excludes margin stacking for future uncertainties (assumptions on fiber cuts, fiber aging, component variations, component aging, model accuracy limitations), the typically longer restoration paths can exploit higher order modulation formats, in some cases matching those employed in the working paths. It is shown that network operators can thus benefit from reduced restoration resources and a lower total cost of ownership (TCO).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.