Abstract
Aiming for low-complexity encoding, video coders based on Wyner–Ziv theory are still unsuccessfully trying to match the performance of predictive video coders. One of the most important factors concerning the coding performance of distributed coders is modeling and estimating the correlation between the original video signal and its temporal prediction generated at the decoder. One of the problems of the state-of-the-art correlation estimators is that their performance is not consistent across a wide range of video content and different coding settings. To address this problem we have developed a correlation model able to adapt to changes in the content and the coding parameters by exploiting the spatial correlation of the video signal and the quantization distortion. In this paper we describe our model and present experiments showing that our model provides average bit rate gains of up to 12% and average PSNR gains of up to 0.5 dB when compared to the state-of-the-art models. The experiments suggest that the performance of distributed coders can be significantly improved by taking video content and coding parameters into account.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.