Abstract
Lactic acid bacteria (LAB) have been documented as potential vitamin B12 producers and may constitute an exogenous source of cobalamin for the microalga Chlorella vulgaris, which has been described as being able to perform vitamin uptake. Hence, there is an interest in discovering novel B12-producing probiotic LAB. Therefore, the purpose of the current work was to perform a phenotype-genotype analysis of the vitamin B12 biosynthesis capacity of LAB isolated from C. vulgaris bioreactors, and investigate their probiotic potential. Among the selected strains, Lactococcus lactis E32, Levilactobacillus brevis G31, and Pediococcus pentosaceus L51 demonstrated vitamin B12 biosynthesis capacity, with the latter producing the highest (28.19 ± 2.27 pg mL-1). The genomic analysis confirmed the presence of pivotal genes involved in different steps of the biosynthetic pathway (hemL, cbiT, cobC, and cobD). Notably, P. pentosaceus L51 was the only strain harboring cobA, pduU, and pduV genes, which may provide evidence for the presence of the cobalamin operon. All strains demonstrated the capability to withstand harsh gastrointestinal conditions, although P. pentosaceus L51 was more resilient. The potential for de novo cobalamin biosynthesis and remarkable probiotic features highlighted that P. pentosaceus L51 may be considered the most promising candidate strain for developing high-content vitamin B12 formulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.