Abstract
Coarse-grained reconfigurable architecture (CGRA) is a promising parallel computing platform that provides high performance, high power efficiency and flexibility. However, for imperfect nested loops, the existing loop mapping methods often result in low execution performance and poor hardware utilization. To tackle this problem, this paper makes three contributions: 1) a highly effective and general approach to map imperfect loops on CGRA; 2) a global optimization strategy to search the optimal initiation intervals (IIs); 3) a powerful kernel compression method to reduce the oversized kernel. Experiment results show that our approach can reduce the total computing latency by 20.5, 58.5 and 73.2 percent compared to the state-of-the-art approaches on $2 \times 2$ , $4 \times 4$ and $8 \times 8$ CGRA respectively. Moreover, the compilation time and configuration context size is acceptable in practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Parallel and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.