Abstract
Given much recent discussion and the shift in focus of the field, it is becoming apparent that the incorporation of syntax is the way forward for the current state-of-the-art in machine translation (MT). Parallel treebanks are a relatively recent innovation and appear to be ideal candidates for MT training material. However, until recently there has been no other means to build them than by hand. In this paper, we describe how we make use of new tools to automatically build a large parallel treebank and extract a set of linguistically motivated phrase pairs from it. We show that adding these phrase pairs to the translation model of a baseline phrase-based statistical MT (PBSMT) system leads to significant improvements in translation quality. We describe further experiments on incorporating parallel treebank information into PBSMT, such as word alignments. We investigate the conditions under which the incorporation of parallel treebank data performs optimally. Finally, we discuss the potential of parallel treebanks in other paradigms of MT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.