Abstract

In this paper we have investigated the relationship between the current and the active layer thickness of an organic solar cell (OSC) in order to improve its efficiency by means of a back propagation neural network. In order to preserve the generalization properties of the adopted neural network (NN) in this paper is presented also an innovative pruning technique. The extensive simulations performed show a good agreement between simulated and experimental data with an overall error of about 3%. The obtained results demostrate that the use of an MLP with associated an appropriate pruning algorithm to preserve its generalization capacities permits to accurately reproduce the relationship between the active layer thicknesses and the measured maximum power in an OSC. This neural model can be of great use in manufacturing processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.