Abstract

Optomechanical systems are rapidly becoming one of the most promising platforms for observing quantum behaviour, especially at the macroscopic level. Moreover, thanks to their state-of-the-art methods of fabrication, they may now enter regimes of non-linear interactions between their constituent mechanical and optical degrees of freedom. In this work, we show how this novel opportunity may serve to construct a new generation of optomechanical sensors. We consider the canonical optomechanical setup with the detection scheme being based on time-resolved counting of photons leaking from the cavity. By performing simulations and resorting to Bayesian inference, we demonstrate that the non-classical correlations of the detected photons may crucially enhance the sensor performance in real time. We believe that our work may stimulate a new direction in the design of such devices, while our methods apply also to other platforms exploiting non-linear light-matter interactions and photon detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call