Abstract

The rhizosphere is the site of intense interactions between plant, bacterial, and fungal partners. In plant-bacterial interactions, signal molecules exuded by the plant affect both primary initiation and subsequent behavior of the bacteria in complex beneficial associations such as biocontrol. However, despite this general acceptance that plant-root exudates have an effect on the resident bacterial populations, very little is still known about the influence of these signals on bacterial gene expression and the roles of genes found to have altered expression in plant-microbial interactions. Analysis of the rhizospheric communities incorporating both established techniques, and recently developed "omic technologies" can now facilitate investigations into the molecular basis underpinning the establishment of beneficial plant-microbial interactomes in the rhizosphere. The understanding of these signaling processes, and the functions they regulate, is fundamental to understanding the basis of beneficial microbial-plant interactions, to overcoming existing limitations, and to designing improved strategies for the development of novel Pseudomonas biocontrol strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.