Abstract

The use of multimetallic complexes is a rapidly advancing route to enhance catalyst performance in the ring-opening polymerization of cyclic esters and ethers. Multimetallic catalysts often outperform their monometallic analogues in terms of reactivity and/or polymerization control, and these improvements are typically attributed to "multimetallic cooperativity". Yet the origins of multimetallic cooperativity often remain unclear. This review explores the key factors underpinning multimetallic cooperativity, including metal-metal distances, the flexibility, electronics and conformation of the ligand framework, and the coordination environment of the metal centers. Emerging trends are discussed to provide insights into why cooperativity occurs and how to harness cooperativity for the development of highly efficient multimetallic catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call