Abstract
As cellular data services and applications are being widely deployed, they become attractive targets for attackers, who could exploit unique vulnerabilities in cellular networks, mobile devices, and the interaction between cellular data networks and the Internet. In this paper, we demonstrate such an attack, which surreptitiously drains mobile devices' battery power up to 22 times faster and therefore could render these devices useless before the end of business hours. This attack targets a unique resource bottleneck in mobile devices (the battery power) by exploiting an insecure cellular data service (MMS) and the insecure interaction between cellular data networks and the Internet (PDP context retention and the paging channel). The attack proceeds in two stages. In the first stage, the attacker compiles a hit list of mobile devices - including their cellular numbers, IP addresses, and model information - by exploiting MMS notification messages. In the second stage, the attacker drains mobile devices' battery power by sending periodical UDP packets and exploiting PDP context retention and the paging channel. This attack is unique not only because it exploits vulnerable cellular services to target mobile devices hut also because the victim mobile users are unaware when their batteries are being drained. Furthermore, we identify two key vulnerable components in cellular networks and propose mitigation strategies for protecting cellular devices from such attacks from the Internet
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.