Abstract

This work explores the potentiality of millimeter waves (mmW) as physical layer in industrial wireless networks. Innovative models and a link design method are proposed to achieve reliable communication, at a distance of tens of meters for a single hop, even in harsh environments. By exploiting the worldwide-free band of several GHz, available around 60 GHz, mmW links allow to achieve a performance boosting of up to two orders of magnitude, w.r.t. conventional sub-6-GHz wireless links, in indoor industrial environments. Time slotted channel hopping and frequency-diversity can be implemented with a large number of channels, and with high bit rate (several Mb/s per channel). This allows for robust networking of high data-rate sensors, such as cameras, radars, or laser scanners. Featuring a low bit error rate, mmW communication allows for low-latency link and large number of hops in networks with a large radius. Finally, it ensures interference separation from operating frequencies of electrical machines, switching converters, and other industrial wireless networks (e.g., 802.11 or 802.15). Implementation results for key HW blocks in low-cost technologies show the feasibility of mmW communication nodes with low-power and compact size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.