Abstract
We focus on symmetries related to matrices and vectors appearing in the simulation of quantum many-body systems. Spin Hamiltonians have special matrix-symmetry properties such as persymmetry. Furthermore, the systems may exhibit physical symmetries translating into symmetry properties of the eigenvectors of interest. Both types of symmetry can be exploited in sparse representation formats such as Matrix Product States (MPS) for the desired eigenvectors. This article summarizes symmetries of Hamiltonians for typical physical systems such as the Ising model and lists resulting properties of the related eigenvectors. Based on an overview of MPS (Tensor Trains or Tensor Chains) and their canonical normal forms, we show how symmetry properties of the vector translate into relations between the MPS matrices and, in turn, which symmetry properties result from relations within the MPS matrices. In this context, we analyse different kinds of symmetries and derive appropriate normal forms for MPS representing these symmetries. Exploiting such symmetries by using these normal forms will lead to a reduction in the number of degrees of freedom in the MPS matrices. This article provides a uniform platform for both well-known and new results which are presented from the (multi-)linear algebra point of view.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.