Abstract

In a GPU, all threads within a warp execute the same instruction in lockstep. For a memory instruction, this can lead to memory divergence: the memory requests for some threads are serviced early, while the remaining requests incur long latencies. This divergence stalls the warp, as it cannot execute the next instruction until all requests from the current instruction complete. In this work, we make three new observations. First, GPGPU warps exhibit heterogeneous memory divergence behavior at the shared cache: some warps have most of their requests hit in the cache (high cache utility), while other warps see most of their request miss (low cache utility). Second, a warp retains the same divergence behavior for long periods of execution. Third, due to high memory level parallelism, requests going to the shared cache can incur queuing delays as large as hundreds of cycles, exacerbating the effects of memory divergence. We propose a set of techniques, collectively called Memory Divergence Correction (MeDiC), that reduce the negative performance impact of memory divergence and cache queuing. MeDiC uses warp divergence characterization to guide three components: (1) a cache bypassing mechanism that exploits the latency tolerance of low cache utility warps to both alleviate queuing delay and increase the hit rate for high cache utility warps, (2) a cache insertion policy that prevents data from highcache utility warps from being prematurely evicted, and (3) a memory controller that prioritizes the few requests received from high cache utility warps to minimize stall time. We compare MeDiC to four cache management techniques, and find that it delivers an average speedup of 21.8%, and 20.1% higher energy efficiency, over a state-of-the-art GPU cache management mechanism across 15 different GPGPU applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.