Abstract

AbstractDirect additive fabrication of thin‐film electronics using a high‐mobility, wide‐bandgap amorphous oxide semiconductor (AOS) can pave the way for integration of efficient power circuits with digital electronics. For power rectifiers, vertical thin‐film diodes (V‐TFDs) offer superior efficiency and higher frequency operation compared to lateral thin‐film transistors (TFTs). However, the AOS V‐TFDs reported so far require additional fabrication steps and generally suffer from low voltage handling capability. Here, these challenges are overcome by exploiting in situ reactions of molybdenum (Mo) during the solution‐process deposition of amorphous zinc tin oxide film. The oxidation of Mo forms the rectifying contact of the V‐TFD, while the simultaneous diffusion of Mo increases the diode's voltage range of operation. The resulting V‐TFDs are demonstrated in a full‐wave rectifier for wireless energy harvesting from a commercial radio‐frequency identification reader. Finally, by using the same Mo film for V‐TFD rectifying contacts and TFT gate electrodes, this process allows simultaneous fabrication of both devices without any additional steps. The integration of TFTs alongside V‐TFDs opens a new fabrication route for future low‐cost and large‐area thin‐film circuitry with embedded power management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.