Abstract

Recent work has shown an increase of accuracy in recommender systems that use affective labels. In this paper we compare three labeling methods within a recommender system for images: (i) generic labeling, (ii) explicit affective labeling and (iii) implicit affective labeling. The results show that the recommender system performs best when explicit labels are used. However, implicitly acquired labels yield a significantly better performance of the CBR than generic metadata while being an unobtrusive feedback tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.