Abstract
Interactive service providers have strict requirements on high-percentile (tail) latency to meet user expectations. If providers meet tail latency targets with less energy, they increase profits, because energy is a significant operating expense. Unfortunately, optimizing tail latency and energy are typically conflicting goals. Our work resolves this conflict by exploiting servers with per-core Dynamic Voltage and Frequency Scaling (DVFS) and Asymmetric Multicore Processors (AMPs). We introduce the Adaptive Slow-to- Fast scheduling framework, which matches the heterogeneity of the workload–a mix of short and long requests–to the heterogeneity of the hardware– cores running at different speeds. The scheduler prioritizes long requests to faster cores by exploiting the insight that long requests reveal themselves. We use control theory to design threshold-based scheduling policies that use individual request progress, load, competition, and latency targets to optimize performance and energy. We configure our framework to optimize Energy Efficiency for a given Tail Latency (EETL) for both DVFS and AMP. In this framework, each request self-schedules, starting on a slow core and then migrating itself to faster cores. At high load, when a desired AMP core speed s is not available for a request but a faster core is, the longest request on an s core type migrates early to make room for the other request. Compared to per-core DVFS systems, EETL for AMPs delivers the same tail latency, reduces energy by 18% to 50%, and improves capacity (throughput) by 32% to 82%. We demonstrate that our framework effectively exploits dynamic DVFS and static AMP heterogeneity to reduce provisioing and operational costs for interactive services. CCS CONCEPTS • Computer systems organization $\rightarrow$ Heterogeneous (hybrid) systems; • Software and its engineering $\rightarrow$ Scheduling;
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.