Abstract

Chronic infection with hepatitis C virus (HCV) may lead to liver failure and hepatocellular carcinoma. Current treatment for HCV includes high systemic doses of interferonalpha (IFNalpha), which is effective in less than half of patients and may have severe side effects. We designed conditional IFNalpha and IFNgamma expression constructs to be triggered by HCV-induced activation of NFkappaB, and delivered these using highly efficient recombinant Tag-deleted SV40-derived vectors. NFkappaB activates the HIV-1NL4-3 long terminal repeat (HIVLTR) as a promoter, which accounts for the conditional transgene expression. Human hepatocyte lines and primary rat hepatocytes (PRH) were transduced with SV[HIVLTR](IFN) vectors, and transfected with HCV cDNA. Production of human and murine IFNalpha and IFNgamma in cytosol and culture supernatants was measured. HCV activated the HIVLTR to produce and secrete IFNs, and did so largely through the NFkappaB binding sites of the HIVLTR. Levels of IFNs secreted, and the magnitude of induction in response to HCV, were greater in hepatocyte lines than in primary cultured hepatocytes. However, even in the latter, supernatant IFNalpha concentrations achieved by this approach were similar to therapeutic serum concentrations sought in systemic IFNalpha-treated patients. In coculture studies, secreted IFNalpha activated its cognate response elements in untransduced cells, suggesting that its potential inhibitory effects on HCV may not be limited to transduced cells. Although HCV replication in culture is difficult to assess, HCV-induced IFNalpha production demonstrably reduced HCV transcription. Conditional expression of IFNs within the liver may represent an attractive approach to therapy of severe chronic HCV infection that could avoid the side effects of systemic treatment regimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.