Abstract
Current edge computing systems are deployed in highly complex application scenarios with dynamically changing requirements. In order to provide the expected performance and energy efficiency values in these situations, the use of heterogeneous hardware/software platforms at the edge has become widespread. However, these computing platforms still suffer from the lack of unified software-driven programming models to efficiently deploy multi-purpose hardware-accelerated solutions. In parallel, edge computing systems also face another huge challenge: operating under multiple conditions that were not taken into account during any of the design stages. Moreover, these conditions may change over time, forcing self-adaptation mechanisms to become a must. This paper presents an integrated architecture to exploit hardware-accelerated data-parallel models and transparent hardware/software multithreading. In particular, the proposed architecture leverages the ARTICo <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> framework and ReconOS to allow developers to select the most suitable programming model to deploy their edge computing applications onto run-time reconfigurable hardware devices. An evolvable hardware system is used as an additional architectural component during validation, providing support for continuous lifelong learning in smart edge computing scenarios. In particular, the proposed setup exhibits online learning capabilities that include learning by imitation from software-based reference algorithms. Experimental results show the benefits of the proposed approach, exposing different run-time tradeoffs (e.g., computing performance versus functional correctness of the evolved solutions), and highlighting the benefits of using scalable data-parallel models to perform circuit evolution under dynamically changing application scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.