Abstract
Plasmonic graded nano-gratings enable rainbow trapping of multiple resonant modes over a wide wavelength spectrum, useful for multi-channel Surface Enhanced Raman Spectroscopy (SERS) of molecular species. However, rectangular nano-gratings have limitations in achieving efficient rainbow trapping and localizing a wide spectrum of plasmonic modes due to their stepwise geometry, which induces high dissipation of surface plasmon polaritons into the substrate. An alternative platform of graded triangular nano-gratings enables increased localization and more efficient adiabatic transformation between neighboring grooves. Varying groove angles, depths, and periods in the tapered geometry allow for smooth adjustment of the surface plasmon polariton propagation constant, reducing losses and maximizing nano-focusing inside the groove tips. To overcome the limitation of low aspect ratio in wet-etching silicon, we employed a multi-step process of reactive ion etching of a SiO2 barrier layer to generate aperture width, followed by anisotropic wet-etching. The resulting graded triangular nano-gratings showed excellent SERS enhancement along three laser wavelength excitations. The enhancement factors of 638 and 785 nm wavelengths are 8.5 × 109 and 9 × 108, respectively, for the detection of 1 µM Rhodamine 6G. In addition, graded triangular nano-gratings show similar enhancement factors for other species, specifically the lipid DPEE-PEG, at the 532 nm laser excitation wavelength with an excellent SERS enhancement factor of 1.5 × 109. Owing to the ability of the graded triangular gratings to elicit pronounced SERS responses across three distinct laser excitations, they unequivocally qualify as “rainbow trapping” structures. Wider apertures, lower ohmic losses, and the ability to tune the groove angle beyond conventional etching methods bode well for graded triangular gratings as a superior platform for miniature sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.