Abstract

Two lines of image representation based on multiple features fusion demonstrate excellent performance in image retrieval. However, there are some problems in both of them: 1) the methods defining directly texture in color space put more emphasis on color than texture feature; 2) the methods extract several features respectively and combine them into a vector, in which bad features may lead to worse performance after combining directly good and bad features. To address the problems above, a novel hybrid framework for color image retrieval through combination of local and global features achieves higher retrieval precision. The bag-of-visual words (BoW) models and color intensity-based local difference patterns (CILDP) are exploited to capture local and global features of an image. The proposed fusion framework combines the ranking results of BoW and CILDP through graph-based density method. The performance of our proposed framework in terms of average precision on Corel-1K database is 86.26%, and it improves the average precision by approximately 6.68% and 12.53% over CILDP and BoW, respectively. Extensive experiments on different databases demonstrate the effectiveness of the proposed framework for image retrieval.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.