Abstract
Cancer is widely recognized as the primary cause of mortality worldwide, and pathology analysis plays a pivotal role in achieving accurate cancer diagnosis. The intricate representation of features in histopathological images encompasses abundant information crucial for disease diagnosis, regarding cell appearance, tumor microenvironment, and geometric characteristics. However, recent deep learning methods have not adequately exploited geometric features for pathological image classification due to the absence of effective descriptors that can capture both cell distribution and gathering patterns, which often serve as potent indicators. In this paper, inspired by clinical practice, a Hierarchical Graph Pyramid Transformer (HGPT) is proposed to guide pathological image classification by effectively exploiting a geometric representation of tissue distribution which was ignored by existing state-of-the-art methods. First, a graph representation is constructed according to morphological feature of input pathological image and learn geometric representation through the proposed multi-head graph aggregator. Then, the image and its graph representation are feed into the transformer encoder layer to model long-range dependency. Finally, a locality feature enhancement block is designed to enhance the 2D local representation of feature embedding, which is not well explored in the existing vision transformers. An extensive experimental study is conducted on Kather-5K, MHIST, NCT-CRC-HE, and GasHisSDB for binary or multi-category classification of multiple cancer types. Results demonstrated that our method is capable of consistently reaching superior classification outcomes for histopathological images, which provide an effective diagnostic tool for malignant tumors in clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.