Abstract

MotivationComputer-aided analysis of biological images typically requires extensive training on large-scale annotated datasets, which is not viable in many situations. In this paper, we present Generative Adversarial Network Discriminator Learner (GAN-DL), a novel self-supervised learning paradigm based on the StyleGAN2 architecture, which we employ for self-supervised image representation learning in the case of fluorescent biological images.ResultsWe show that Wasserstein Generative Adversarial Networks enable high-throughput compound screening based on raw images. We demonstrate this by classifying active and inactive compounds tested for the inhibition of SARS-CoV-2 infection in two different cell models: the primary human renal cortical epithelial cells (HRCE) and the African green monkey kidney epithelial cells (VERO). In contrast to previous methods, our deep learning-based approach does not require any annotation, and can also be used to solve subtle tasks it was not specifically trained on, in a self-supervised manner. For example, it can effectively derive a dose-response curve for the tested treatments.Availability and implementationOur code and embeddings are available at https://gitlab.com/AlesioRFM/gan-dl StyleGAN2 is available at https://github.com/NVlabs/stylegan2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.