Abstract
In this paper, we study the challenging problem of categorizing videos according to high-level semantics such as the existence of a particular human action or a complex event. Although extensive efforts have been devoted in recent years, most existing works combined multiple video features using simple fusion strategies and neglected the utilization of inter-class semantic relationships. This paper proposes a novel unified framework that jointly exploits the feature relationships and the class relationships for improved categorization performance. Specifically, these two types of relationships are estimated and utilized by imposing regularizations in the learning process of a deep neural network (DNN). Through arming the DNN with better capability of harnessing both the feature and the class relationships, the proposed regularized DNN (rDNN) is more suitable for modeling video semantics. We show that rDNN produces better performance over several state-of-the-art approaches. Competitive results are reported on the well-known Hollywood2 and Columbia Consumer Video benchmarks. In addition, to stimulate future research on large scale video categorization, we collect and release a new benchmark dataset, called FCVID, which contains 91,223 Internet videos and 239 manually annotated categories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.