Abstract

Enzyme-catalyzed reactions can be exploited to control molecular self-assembly under physiological conditions by converting nonassembling precursors into self-assembly building blocks. Two complementary approaches based on aromatic short-peptide derivatives that form molecular hydrogels are demonstrated. Firstly, it is shown that esterase-directed self assembly via hydrolysis of hydrophobic N-(fluorenyl-9-methoxycarbonyl) (Fmoc)-peptide methyl esters give rise to formation of transparent hydrogels composed of defined peptide nanotubes. The internal and external diameters of these tubes are highly tunable, depending on the amino acid composition and chain length of the building blocks. Secondly, protease-directed self-assembly of Fmoc-peptide esters is achieved via amide-bond formation (reversed hydrolysis) for combinations of Fmoc-threonine and leucine/phenylalanine methyl esters, producing fibrous hydrogels. Upon treatment with an esterase, these systems revert back to solution, thus providing a two-stage solution-gel-solution transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call