Abstract

Graphics Processing Units (GPUs) have been used in general purpose computing for several years. The newly introduced Dynamic Parallelism feature of Nvidia's Kepler GPUs allows launching kernels from the GPU directly. However, the naive use of this feature can cause a high number of nested kernel launches, each performing limited work, leading to GPU underutilization and poor performance. We propose workload consolidation mechanisms at different granularities to maximize the work performed by nested kernels and reduce their overhead. Our end goal is to design automatic code transformation techniques for applications with irregular nested loops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.