Abstract

Tourism recommender systems match the user preferences against the huge diversity of tourist resources, helping to decide where to go and what to do. Current approaches require the users to initialize manually their profiles by expressing their interests accurately, which is a very tedious process. We propose a system that automatically infers the users' preferences from their TV viewing histories, i.e., the tourism resources the users might appreciate are selected by considering the TV contents they enjoyed in the past. To this aim, we have developed a context-aware semantics-based recommendation strategy that considers both the users' preferences and the interests of like-minded individuals. The resulting recommendations shape a tailor-made on-move travel plan the users can access via (domestic and) handheld consumer devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.