Abstract

Axonal delays are used in neural computation to implement faithful models of biological neural systems, and in spiking neural networks models to solve computationally demanding tasks. While there is an increasing number of software simulations of spiking neural networks that make use of axonal delays, only a small fraction of currently existing hardware neuromorphic systems supports them. In this paper we demonstrate a strategy to implement temporal delays in hardware spiking neural networks distributed across multiple Very Large Scale Integration (VLSI) chips. This is achieved by exploiting the inherent device mismatch present in the analog circuits that implement silicon neurons and synapses inside the chips, and the digital communication infrastructure used to configure the network topology and transmit the spikes across chips. We present an example of a recurrent VLSI spiking neural network that employs axonal delays and demonstrate how the proposed strategy efficiently implements them in hardware.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.