Abstract

Channel state information (CSI) feedback is important for multiple-input multiple-output (MIMO) wireless systems to achieve their capacity gain in frequency division duplex mode. For massive MIMO systems, CSI feedback may consume too much bandwidth and degrade spectrum efficiency. This letter proposes a learning-based CSI feedback framework based on limited feedback and bi-directional reciprocal channel characteristics. The massive MIMO base station exploits the available uplink CSI to help recovering the unknown downlink CSI from low rate user feedback. We propose two deep learning architectures, DualNet-MAG and DualNet-ABS, to significantly reduce the CSI feedback payload based on the multipath reciprocity. DualNet-MAG and DualNet-ABS can exploit the bi-directional correlation of the magnitude and the absolute value of real/imaginary parts of the CSI coefficients, respectively. The experimental results demonstrate that our architectures bring an obvious improvement compared with the downlink-based architecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.