Abstract

Many solution methods for Markov Decision Processes (MDPs) exploit structure in the problem and are based on value function factorization. Especially multiagent settings, however, are known to suffer from an exponential increase in value component sizes as interactions become denser, restricting problem sizes and types that can be handled. We present an approach to mitigate this limitation for certain types of multiagent systems, exploiting a property that can be thought of as "anonymous influence" in the factored MDP. We show how representational benefits from anonymity translate into computational efficiencies, both for variable elimination in a factor graph and for the approximate linear programming solution to factored MDPs. Our methods scale to factored MDPs that were previously unsolvable, such as the control of a stochastic disease process over densely connected graphs with 50 nodes and 25 agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.