Abstract

Integrating more processor cores on-die has become the unanimous trend in the microprocessor industry. Most of the current research thrusts using chip multiprocessors (CMPs) as the baseline to analyze problems in various domains. One of the main design issues facing CMP systems is the growing number of snoops required to maintain cache coherency and to support self/cross-modifying code that leads to power and performance limitations. In this paper, we analyze the internal and external snoop behavior in a CMP system and relax the snoopy cache coherence protocol based on the program semantics and properties of the shared variables for saving power. Based on the observations and analyses, we propose two novel techniques: Selective Snoop Probe (SSP) and Essential Snoop Probe (ESP) to reduce power without compromising performance. Our simulation results show that using the SSPtechnique, 5% to 65% data cache energy savings per core for different processor configurations can be achieved with 1% to 2% performance improvement. We also show that 5% to 82% of data cache energy per core is spent on the non-essential snoop probes that can be saved using the ESP technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.