Abstract
Unlike humans, mice are unable to support HIV-1 infection. This is due, in part, to a constellation of defined minor, species-specific differences in conserved host proteins needed for viral gene expression. Here, we used precision CRISPR/Cas9 gene editing to engineer a "mousified" version of one such host protein, cyclin T1 (CCNT1), in human T cells. CCNT1 is essential for efficient HIV-1 transcription, making it an intriguing target for gene-based inactivation of virus replication. We show that isogenic cell lines engineered to encode CCNT1 bearing a single mouse-informed amino acid change (tyrosine in place of cysteine at position 261) exhibit potent, durable, and broad-spectrum resistance to HIV-1 and other pathogenic lentiviruses, and with no discernible impact on host cell biology. These results provide proof of concept for targeting CCNT1 in the context of one or more functional HIV-1 cure strategies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.