Abstract

Multifunctional metal-organic frameworks (MOFs) rely on the properties of metal centers (nodes) and/or linkers (struts) for their diverse applications in the emerging field of research. Currently, there is a huge demand for MOF materials in the field of capture/fixation/sensing of air pollutants, harmful chemical effluents, and nuclear waste. However, it is a challenging task to utilize one MOF for providing remedies to all these issues. On the basis of our current research activities, we have identified that an oxadiazole moiety-a five-membered ring with two different heteroatoms (O and N)-in a carboxylate linker can be the key to generating such MOF materials for its (a) inherent polarizable nature and molecular docking ability and (b) photoluminescence properties. In this work, we report a 3D MOF {[Co2(oxdz)2(tpbn)(H2O)2]·4H2O}n (1), self-assembled at room temperature from a three-component reaction, with an oxadiazole moiety (where H2oxdz = 4,4'-(1,3,4-oxadiazole-2,5-diyl)dibenzoic acid and tpbn = N,N',N,"N″'-tetrakis(2-pyridylmethyl)-1,4-diaminobutane). The inherent polarizable nature of the oxadiazole moiety in 1 has been efficiently exploited for (i) multimedia iodine capture and (ii) fixation of CO2 under solvent-free and ambient conditions. On the other hand, the luminescent nature of the framework is found to be an efficient, highly preferred turn-on sensor for the ultra-fast detection of ketones with a limit as low as parts-per-trillion (mesitylene oxide: 447 ppt; cycloheptanone: 4.7 ppb; cyclohexanone: 17.2 ppb; acetylacetone: 18 ppb).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call