Abstract

The hollow cathode (HC) effect was investigated in non-cooled 15 mm deep drilled flat metallic analytical samples that were easy to prepare. The deep cavity used (“complete HC” in contrast to “recessed HC” with 2–3 mm deep cavity) intensified the HC effect notably and therefore distinctly improved the detection power of the common GD-OES with planar cathodes. A signal enhancement of up to a factor of 150, not reported earlier, in comparison with flat conventional samples was achieved. A better separation of the analytical lines from spectral interferences was observed when the HC assembly was applied. Additionally, an effect of strongly enhanced intensities of atomic lines and somewhat decreased intensities of ionic lines was detected in the case of HC in comparison to usual planar cathodes. The investigations were carried out with samples of copper, steel and zinc matrices using both the same and individually optimised glow discharge (GD) electrical parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call