Abstract

AbstractThe synthesis of bio‐derived cyclic carbonates is attracting a lot of attention as the incorporation of bio‐derived functionality into these compounds provides the opportunity to prepare previously unknown structures, whilst also improving their sustainability profiles. This study presents a facile preparation of diastereomerically pure bio‐derived cyclic carbonates displaying a range of optical rotation values. These compounds are obtained from glycidol, amino acids and CO2 in a facile two‐step approach. Initially, the diastereomerically pure amino acid functionalised epoxides are prepared through a robust Steglich esterification of enantiopure glycidol (R or S) and an amino acid (D or L). Thereafter, in a second step, cycloaddition of the epoxide with CO2 results in the retention of the initial stereochemistry of the epoxide, furnishing novel diastereomerically pure and optically active cyclic carbonate products. A DFT study has explained the basis of this observed retention of configuration for these compounds. Further, results from this DFT study also provide new mechanistic information concerning a co‐catalyst‐free cycloaddition reaction starting from glycidol when using the gallium‐catalyst, which is found to operate through metal‐ligand cooperativity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.