Abstract
A new detection method based on the photoluminescence properties of dye-sensitized lanthanide nanoparticles (Ln NPs) was developed for enzyme-linked immunosorbent assays (ELISAs). In this method, the horseradish peroxidase (HRP) enzyme catalyzes the oxidation of phenol derivatives in the presence of hydrogen peroxide, providing dimers that are able to interact with the Ln NP surface and to efficiently photosensitize the Ln ions. Due to the very long emission lifetime of Ln, the time-gated detection of Ln NP luminescence allows the elimination of background noise due to the biological environment. After a comparison of the enzyme-catalyzed oxidation of various phenol derivatives, methyl 4-hydroxyphenyl acetate (MHPA) was selected as the most promising substrate, as the highest Ln emission intensity was observed following its HRP-catalyzed oxidation. After a meticulous optimization of the conditions of both the enzymatic reaction and the Ln sensitization (buffer, pH, concentration of the reactants, NP type, etc.), this new detection method was successfully implemented in a commercial insulin ELISA kit as a proof-of-concept, with an increased sensitivity compared to the commercial detection method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.