Abstract

The potential of several agricultural wastes and by-products (wheat bran, oat bran, corn cob, brewer’s spent grain, malt sprout, artichoke stem, sugar beet pulp, olive seed, cotton stalk and hazelnut skin) was examined as the substrate for xylanase production by Aureobasidium pullulans Y-2311-1. Based on the screening studies, wheat bran was selected as the best substrate for further optimization studies. The effects of initial medium pH, temperature and incubation time on xylanase production in shake flask system were optimized by response surface methodology (RSM). The optimum levels of the process variables defined by the model (initial medium pH, 4.24; temperature, 30.27 °C; and incubation time 126.67 h) resulted in production of 85.19 U/ml xylanase. Taking the RSM optimized parameters in shake-flask scale into consideration; xylanase production was scaled up to bioreactor system with a working volume of 1.5 l. The peak of enzyme production was achieved after 126 h incubation that has previously been determined by RSM studies at shake flask level. Furthermore, the optimum levels of agitation and aeration in bioreactor system was found as 200 rpm and 1.5 vvm. Maximum enzyme production was close to 85 kU/l which could be translated into a productivity of 0.68 kU/l/h. No previous work considered the statistical optimization of xylanase production by A. pullulans on wheat bran and scale up of the bioprocess to a bioreactor system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.