Abstract

We have performed a detailed linear stability analysis of exploding solitons of the complex cubic–quintic Ginzburg–Landau (CGLE) equation. We have found, numerically, the whole set of perturbation eigenvalues for these solitons. We propose a scenario of soliton evolution based on this spectrum of eigenvalues. We relate exploding and self-restoring behavior of solitons to the Shil'nikov theorem, and point out common features and differences between our system, with an infinite number of degrees of freedom, and Shil'nikov's system with three degrees of freedom.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.