Abstract
Explicitly correlated functions have been used since 1929, but initially only for two-electron systems. In 1960, Boys and Singer showed that if the correlating factor is of Gaussian form, many-electron integrals can be computed for general molecules. The capability of explicitly correlated Gaussian (ECG) functions to accurately describe many-electron atoms and molecules was demonstrated only in the early 1980s when Monkhorst, Zabolitzky and the present authors cast the many-body perturbation theory (MBPT) and coupled cluster (CC) equations as a system of integro-differential equations and developed techniques of solving these equations with two-electron ECG functions (Gaussian-type geminals, GTG). This work brought a new accuracy standard to MBPT/CC calculations. In 1985, Kutzelnigg suggested that the linear r 12 correlating factor can also be employed if n-electron integrals, n > 2, are factorised with the resolution of identity. Later, this factor was replaced by more general functions f (r 12), most often by , usually represented as linear combinations of Gaussian functions which makes the resulting approach (called F12) a special case of the original GTG expansion. The current state-of-art is that, for few-electron molecules, ECGs provide more accurate results than any other basis available, but for larger systems the F12 approach is the method of choice, giving significant improvements over orbital calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.