Abstract

Abstract Shalom and Tao showed that a polynomial upper bound on the size of a single, large enough ball in a Cayley graph implies that the underlying group has a nilpotent subgroup with index and degree of polynomial growth both bounded effectively. The third and fourth authors proved the optimal bound on the degree of polynomial growth of this subgroup, at the expense of making some other parts of the result ineffective. In the present paper, we prove the optimal bound on the degree of polynomial growth without making any losses elsewhere. As a consequence, we show that there exist explicit positive numbers ε d \varepsilon_{d} such that, in any group with growth at least a polynomial of degree 𝑑, the growth is at least ε d ⁢ n d \varepsilon_{d}n^{d} . We indicate some applications in probability; in particular, we show that the gap at 1 for the critical probability for Bernoulli site percolation on a Cayley graph, recently proven to exist by Panagiotis and Severo, is at least exp ⁡ { - exp ⁡ { 17 ⁢ exp ⁡ { 100 ⋅ 8 100 } } } \exp\{-\exp\{17\exp\{100\cdot 8^{100}\}\}\} .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.