Abstract

This paper is concerned with multidimensional exponential fitting modified Runge-Kutta-Nystrom (MEFMRKN) methods for the system of oscillatory second-order differential equations q″(t)+Mq(t)=f(q(t)), where M is a d×d symmetric and positive semi-definite matrix and f(q) is the negative gradient of a potential scalar U(q). We formulate MEFMRKN methods and show clearly the relationship between MEFMRKN methods and multidimensional extended Runge-Kutta-Nystrom (ERKN) methods proposed by Wu et al. (Comput. Phys. Comm. 181:1955–1962, 2010). Taking into account the fact that the oscillatory system is a separable Hamiltonian system with Hamiltonian \(H(p,q)=\frac{1}{2}p^{T}p+ \frac{1}{2}q^{T}Mq+U(q)\), we derive the symplecticity conditions for the MEFMRKN methods. Two explicit symplectic MEFMRKN methods are proposed. Numerical experiments accompanied demonstrate that our explicit symplectic MEFMRKN methods are more efficient than some well-known numerical methods appeared in the scientific literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.