Abstract
In this paper, we consider the Lorentz force system based on its Hamiltonian formulation. We decompose the Lorentz force system into four subsystems which can be solved with the help of coordinate transformations. Via the coordinate transformations, three kinds of explicit symplectic numerical methods have been established for simulating the motion of charged particles under the time-independent electromagnetic field. We generalize our methods to solve the system with time-dependent external electromagnetic fields, and also the system with a relativistic effect. In numerical experiments, the computing efficiency and accuracy over a long time for the newly derived methods are demonstrated. Also, the long-term simulation for the dynamics of runaway electrons is performed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.