Abstract

Substitution in the lambda calculus is a complex operation that traditional presentations of beta contraction naively treat as a unitary operation. Actual implementations are more careful. Within them, substitutions are realized incrementally through the use of environments. However, environments are usually not accorded a first-class status within such systems in that they are not reflected into term structure. This approach does not allow the smaller substitution steps to be intermingled with other operations of interest on lambda terms. Various new notations for lambda terms remedy this situation by proposing an explicit treatment of substitutions. Unfortunately, a naive implementation of beta reduction based on such notations has the potential of being costly: each use of the substitution propagation rules causes the creation of a new structure on the heap that is often discarded in the immediately following step. There is, thus, a tradeoff between these two approaches. This paper discusses these tradeoffs and offers an amalgamated approach that utilizes recursion in rewrite rule application but also suspends substitution operations where profitable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.