Abstract

High-order spatial discretizations with strong stability properties (such as monotonicity) are desirable for the solution of hyperbolic PDEs. Methods may be compared in terms of the strong stability preserving (SSP) time-step. We prove an upper bound on the SSP coefficient of explicit multistep Runge–Kutta methods of order two and above. Order conditions and monotonicity conditions for such methods are worked out in terms of the method coefficients. Numerical optimization is used to find optimized explicit methods of up to five steps, eight stages, and tenth order. These methods are tested on the advection and Buckley-Leverett equations, and the results for the observed total variation diminishing and positivity preserving time-step are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.