Abstract

This work is devoted to an analytical description of the dynamics of the static/flowing interface in thin dry granular flows. Our starting point is the asymptotic model derived by Bouchutet al. [Comm. Math. Sci.14(2016) 2101–2126] from a free surface incompressible model with viscoplastic rheology including a Drucker–Prager yield stress. This asymptotic model is based on the thin-layer approximation (the flow is thin in the direction normal to the topography compared to its down-slope extension), but the equations are not depth-averaged. In addition to the velocity, the model includes a free surface at the top of the flow and a free time-dependent static/flowing interface at the bottom. In the present work, we simplify this asymptotic model by decoupling the space coordinates, and keeping only the dependence on time and on the normal space coordinateZ. We introduce a time- andZ-dependent source term, assumed here to be given, which represents the opposite of the net force acting on the flowing material, including gravity, pressure gradient, and internal friction. We prove several properties of the resulting simplified model that has a time- andZ-dependent velocity and a time-dependent static/flowing interface as unknowns. The crucial advantage of this simplified model is that it can provide explicit solutions in the inviscid case, for different shapes of the source term. These explicit inviscid solutions exhibit a rich behaviour and qualitatively reproduce some physical features observed in granular flows.

Highlights

  • IntroductionOur starting point is the thin-layer, non-averaged, asymptotic model derived recently in [15] from a viscoplastic model with Drucker– Prager yield stress

  • Dense granular materials can behave like a solid or flow like a fluid

  • We focus here on granular flows above a static layer made of the same grains such as heap flows (e.g. Figs. 6a and 6b of [41]) or surface flows occuring during unsteady flows (e.g. Fig. 18, t = 0.5 s of [27])

Read more

Summary

Introduction

Our starting point is the thin-layer, non-averaged, asymptotic model derived recently in [15] from a viscoplastic model with Drucker– Prager yield stress In this model, the unknowns are a velocity (that can depend on time, down-slope and normal space variables X, Z) and an upper free surface and a static/flowing interface that both depend on time and on X. We identify four different dynamical behaviours depending on the time evolution of b⋆(t) and on the initial data, from the starting to the arrest of the flow, including progressive starting, progressive stopping and a sudden start of part of the granular mass These scenarios are expected to appear in the general asymptotic model when the source term is nonlinearly coupled to the velocity.

Non-averaged thin-layer asymptotic model
Derivation of the simplified model
Properties of the simplified model
Analytical study of the inviscid case
Overview and outlook
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call