Abstract
We provide explicit solutions of certain forward-backward stochastic differential equations (FBSDEs) with quadratic growth. These particular FBSDEs are associated with quadratic term structure models of interest rates and characterize the zero-coupon bond price. The results of this paper are naturally related to similar results on affine term structure models of Hyndman (Math. Financ. Econ. 2(2):107-128, 2009) due to the relationship between quadratic functionals of Gaussian processes and linear functionals of affine processes. Similar to the affine case a sufficient condition for the explicit solutions to hold is the solvability in a fixed interval of Riccati-type ordinary differential equations. However, in contrast to the affine case, these Riccati equations are easily associated with those occurring in linear-quadratic control problems. We also consider quadratic models for a risky asset price and characterize the futures price and forward price of the asset in terms of similar FBSDEs. An example is considered, using an approach based on stochastic flows that is related to the FBSDE approach, to further emphasize the parallels between the affine and quadratic models. An appendix discusses solvability and explicit solutions of the Riccati equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.